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FURTHER STUDIES ON DYNAMIC CRACK BRANCHING

by
M. Ramulu,* A. S. Kobayashi,* B. S.-J. Kang,* and D. B, Barker*¥*

ABSTRACT
The newly derived dynamic crack branching criterion {is verified by dynam-

ic photoelastic analysis of dynamic crack branchings in thin polycarbonate,

single edged crack tension specimens. Successful crack branching was observed

in four specimens and unsuccessful branchings in another. Crack branching

consistently occurred when the necessary condition of KIb = 3.3 MPa mvand the

sufficient condition of o = Tc = 0.7 mm were satisfied simultaneously. In

the unsuccessful branching test the necessary conditon was not satisfied since

KI was always less than KIb'

INTRODUCTION
\

F

Crack branching represents one extreme of the large range of dynamic
crack propagation behaviors and has been the subject of numerous theoretical
and experimental investigations, several of which can be found in References

[1,2]. Recently, the authors derived a crack curving and a branching criteria

based on the directional stability of & propagating crack [3,4]. The crack ;
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curving criteria is a micro-mechanical model of continuous micro-flaw growth

and coalescence in the vicinity of the moving crack tip. It assumes that the
crack is momentarily kinked or bifurcated, when an off-axis micro-flaw con-
nects with the crack tip and is the dynamic extension of the crack curving

criterion proposed by Streit and Finnie Eﬁ?;:

The dynamic crack curving criterion has been used to predict the crack
kinking angle of a propagating crack under pure mode I as well as mixed mode
condtions[3]. The crack branching criterion on the other hand, requires a
critical stress Intensity factor to trigger crack branching and a crack curv-
ing criterion for predicting the crack branching angle [4,6]. The objective
of this paper is to provide further evidence in support of the dynamic crack

branching criterion advanced by the authors.

CRACK BRANCHING CRITERION

The crack branching criterion [6] requires, as the sufficiency condition,
a crack curving criterion [4]. The latter 1s based on the postulate that the
micro-cracks ahead of the crack tip dictate the direction of crack propaga-
tion. When an off-axis, i.e., & # 0, micro-void, which is within a critical
distance, re to the crack tip, is actuated by a critical crack tip stress
field, 1t deflects the crack from its otherewise self-similar propagation
path. The distance between the micro-void and the crack tip, o’ is a
characteristic distance which is governed by the singular state of stress as
well as the stress acting paraliel to the crack, commonly referred to as
either the remote stress or the non-singular stress component, Tox* The

critical distance, ! 1s assumed to be a material property.

3
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The angular orientation of this critical micro-void 1s determined by the
maximum circumferential stress criterion, as modified by Ramulu and Kobayashi
[3], which assumes that the crack will extend towards the maximum circumfer-
entfal stress at a distance, r, away from the rapidly propagating crack tip.
Based on this assumption, under pure mode I loading, f.e., KI F 0, KII = 0
the condition for self-similar propagation of a straight crack is obtained by

setting 0 =0 as

1 I 2
ro= T v _(cyCysCh)
o 1287 on o] 1’%2 ]

where
v ( )=B, (c) {- (1+52) (2-35%)- 4S]SZ(I4+352)-165 (S+5,)+16(1+52)}
0'¢: G162/ e 2 17 132 2/71091191°2 1
2
2 2
2 _ c 2 _q,_C
S] - ] - —2_ ’ Sz - ] ?’
“ 2
¢ = crack velocity, m/s
¢y = dilatational wave velocity, m/s
c, = distortional wave velocity, m/s

Here, KI' Tox and ro» are the mode I stress intensity factor, remote stress
and the characteristic distance, respectively, and can be determined from the
current dynamic state of stress. The onset of crack curving of a rapidly
propagating crack is governed by the stability of the propagating straight
crack and 1s assumed to occur when o < e This e is a characteristic
distance derived from a directional stability criterion involving the critical
crack tip state of stress where 0 suddenly becomes non-zero. The correspond-
ing angle, Qc. for a maximum circumferential stress can be determined from a
transcendental relation involving the critical values of e and f% which is

derived from maximizing the off-axis maximum circumferential stress.

*¥The superscript "dyn" to identify dynamic stress intensity factor will not be

used in this paper, since all quantitites refer to dynamic values.
4




The crack branching criterion, however, involves not only the critical e

but also the maximum K, as a necessary condition for the growth of multiple

of f-axis secondary cracks, and_ro < r_as a sufficiency condition for these

c
multiple cracks to kink simultaneously. Therefore, the crack branching

criterion can be stated as

= Max, KI = KIb Necessary condition

-
fl

Fo £ Tc Sufficiency condition

The crack curving angle Gc determined from the latter crack curving criterion

is one half of the included crack branching angle.

Crack Branching i{n Homalite-100 Fracture Specimens and Pressurized Pipes

The validity of the above criack curving and crack branching criteria was
verified by dynamic photoelasticity results of Homalit-100 single edged-notch
(SEN) specimens and the wedge-loaded, rectangular double-cantilever beam
(WL-RDCB) specimens with branched cracks [3,4,6]. Crack branchig consistently
occurred when the dynamic stress {ntensity factor reached a crack branching
stress intensity factor K;, = 2.04 MPa/m and the characteristic distance r
was less than critical distance of_rc = 1.3 mm. The crack branching angles of
bifurcated cracks in SEN specimens was smaller than in the WL-RDCB specimens.
Differences in crack branching angles are expected since the non-singular
stress, Oox’ in the SEN specimens {s compressive and suppresses the branching

angle whereas the tensile Oox In WL-RDCB enchances the branching angle. The

crack branching angles in pressurized steel of Reference [7,8] and aluminum

pipes of Reference [9] were also predicted by this crack branching criterion

[6].
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POLYCARBONATE FRACTURE SPECIMENS

In order to further verify the dynamic crack branching criterion, a
series of dynamic photoelastic fracture experiments involving thin polycarbon-
ate fracture experiments were conducted. The single edged notch specimens
with blunt starter crack were 127 x 225 mm and 3.2 mm or 6.4 mm thick. At
fracture load, the crack propagated from the starter crack and branched. The
dynamic isochromatics surrounding the propagating crack were recorded with a

16 spark gap Cranz-Schardin camera system.

The fracture parameters of KI' KII and O, [10] assocfated with the

running crack were determined by least square fitting a theoretical dynamic
mixed-mode stress field to the recorded dynamic isochromatics. The isochro-
matic fringe loops were digitized and analyzed on a PDP-11/44 computer. A
least square algorithm was used to determine KI' KII and O__ from the

oXx
multi-point isochromatic data as reported in Ref. [11,12]. The estimated

fracture parameters were then used to generate the corresponding theoretical
isochromatics which were superposed on the experimental isochromatics for a

visual evaluation of the accuracy of the fitting process. A flow chart of

-

&

:; this on-1ine estimation of the dynamic fracture parameters from the recorded
-

¢ dynamic fisochromatics is shown in Figure 1.

g

F 4

‘ RESULTS

b e Figure 2 shows two typical dynamic {sochromatic patterns in a 3.2 mm

thick, fracturing polycarbonate SEN specimen. At fracture load, the crack

initiated and propagated from a blunt starter crack with several unsuc-
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cessful attempts at branching prior to a successful branching.

Figure 3 shows KI' KII and OBX variations associfated with the crack
branching experiment of Figure 2. The crack after fnitiation, propagated with
a gradual increase in its dynamic stress intensity factor. Immediately prior
to branching, the instantaneous dynamic stress intensity factor reached {its
maximum value of 3.3 MPa/m with negligible KII and the assocfated remote
stress, OBx' attained a value of 11.2 MPa. By smoothly extrapolating the
average KI and KII associated with the two branch cracks, an after-branching

Ky % 2.2 MPa/m and K;; = + 0.9 MPa/ are obtained.

Figure 4 shows two frames of the 16-frame dynamic photoelastic record of
a propagating and branching crack in a 3.2 mm thick, polycarbonate SEN speci-
imen. The crack emanated from a blunt saw cut crack and propagated through
much of the length of the plate with innumerable unsuccessful branching prior
to the successful crack branching. Note that post-arrest isochromatics sur-
rounding all unsuccessful branches exhibit a pure mode II crack tip deforma-

tion.

Figure 5 shows the dynamic KI' KII and sz varfations obtained from the
photoelastic patterns preceding and after crack branching from the test shown
in Figure 4. Immediately prior to the crack branching, the extrapolated val-

ues of KI and °o at the onset of crack branching yielded a branching stress

X
intensity factor of KI = 3.3 MPavm. O ox had gradually reached a value of 11.5
MPa, which 1s consistent with previous test results. Immediately after bran-
ching, extrapolated after-branching the average Mode I and Mode II stress in-

tensity factors of K; = 2.2 MPa/m and Ky = + 0.9 MPa/m were cbtained.

7




Figure 6 shows four frames out of a 16-frame dynamic photoelastic record

of another test with multiple crack branching. Although no attempt was made
to analyze these post-branched multiple cracks, the data up to the onset of
successful crack branching yielded again K1 = KIb = 3,32 MPav/m and Obx = 11.72
MPa.

During the last ten plus years of dynamic crack branching study, we have
observed that either the unsuccessfully branched cracks or the completely
arrested cracks were under a pure mode II state. In the tests shown, the pure
mode II isochromatics wera also seen (Figures 2,4,6) at the unsuccessful
branched cracks. Figure 7 shows two enlarged views of Test No. KB-8208024 of
Figure 5 with a mixed-mode isochromatic pattern arres of the branched crack.
Immediately after arrest the crack tip isochromatics transformed into mo&e I1
isochromatics with the 45 u second interval. The mode I and mode II stress
intensity factors K;, K;; and 0_ prior to and after the crack arrest are: K;
= 1.36 MPa/m, KII = 0.06 MPa+m, Oox = =7.7 MPa and KI = 0.05 MPav/m, KII = 0.7
MPa m, Oox = 8.06 MPa respectively. This suggests that the arrested branch
crack undergoes a mode II crack tip deformation during its unloading 1loading

process.

Figure 8 shows the variations of KI’ KII and on assocliated with a
straight crack with unsuccessful branches in 3.2 mm thick specimen. Although
many attempts of branchign were observed, complete branching did not occur 1n
this specimen since the dynamic stress intensity factor was always less than

the KIb = 3,3 MPavm. Evaluations of two additional tests yielded the crack

branching data shown in Table 1. The critical values of ro ranged from 0.6 to

8
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The crack velocity in the five tests were essentially constant and at

about 23 percent of the dilatational wave velocity, €y = 1955 mps. The same
velocity was observed in the crack curving experiments conducted with this
material [13]). It appears that this crack velocity 1s the maximum observed 1n

all the dynamic fracture tests involving polycarbonate.

Figure 9 shows the variations in characteristic distance o’ which was
computed by Equation (1), for the propagating cracks prior to the crack
branching in the five tests. Although the value of ro has a scatterband of
0.5 to 0.9 mm, as shown 1in Figure 8, all extrapolated ro at crack branching
reached an average minimum value of 0.7 mm. This crack branching o = Tc =
0.7 mm represents the sufficiency condition for crack curving and 1is

consistent with the e value determined from the crack curving experiments of

polycarbonate material [13].

Table 1 shows the crack branching stress intensity factors, KIb' the
critical distance, res and the measured and predicted crack branching angles
of all four test results of successful crack branchings. The dynamic stress
intensity factor at the onset of crack branching reached an average maximum
value of 3.3 MPa/m. This branching stress intensity factor was found to be

independent of the thickness of the specimen as well as the initial and

branching crack lengths.
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Crack branching angles were computed by using the crack curving criterion
and are listed in Table 1. The average crack branching angle is 25°%,  The
branching angle in this series of SEN specimens varied between 22° and 34° and

1s consistent with our previous results involving Homal{ite-100 [4].

DISCUSSION

Post-branching cracks 1in all tests always curved. Kalthoff [14],
observed that the direction of two branched cracks attraction or repulsion, is
controlled by KII/KI' The photoelastic patterns of running branched cracks
showed that the crack was perpendicular to the load direction. This strongly
suggests that the crack runs parallel to the compressive stress direction even
under mixed mode conditions which exist after branching. Therefore post-
branching crack propagation is also strongly dependent on the KH/KI ratio as
well as on Dx* Figure 10 shows the post-branching crack curving of specimen
No. 820822, The measured and calculated angles are marked on Figure 10 show
that the crack curving angle gradually decreased in magnitude along with
increase in negative O,x and is in agreement with the numerical results of

Ref. (151].

Figure 11 shows the typical fracture surface in a 6.4 mm thick polycar-
bonate SEN specimen associated with the crack branching. Clear mirror, mist
and hackle zones are visible. This fractured surface indicates that the (%x
term which is the paraliel stress in this specimen, is compressive and opens
the micro-cracks in the form of tongues. Although the dynamic stress
intensoity factor is almost equal to KIb’ the crack did not branch at the fine
hackle zone but branched when this hackle zone became rougher and when the

sufficiency condition was met.

1o
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CONCLUSIONS

1.

Dynamic crack branching criterion proposed by the authors successfu]\y
predicted the crack branching when the necessary condition of K

which triggered the generation of secondary cracks, and the su;ficieﬁey
condition of rr_ < r_, which caused the crack tip diversion, were
satisfied. @ °

2. A crack branching stress intensity factor of K = 3,3 MPa/m and
characteristic radius of re = 0.7mm are determ1nea for this polycarbonate
sheet.

3. Crack curving of post-branched cracks, attraction and repulsion, depends
not only on K /K but more importantly ong Negative O ox SuPpresses
the crack curv‘ng irrespective of the sign 8¥ KII/KI'
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FIGURE 6. TYPICAL DYNAMIC PHOTOELASTIC PATTERNS OF
MULTIPLE CRACK BRANCHING IN A POLYCARBONATE

SINGLE -EDGED NOTCH SPECIMEN.
SPECIMEN NO. KB-820824
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FIGURE 7. DYNAMIC ISOCHROMATIC PATTERNS BEFORE
AND AFTER CRACK ARRESTING IN

BRANCHING CRACK. SPECIMEN NO. KB-820824
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